Chapter 5 Review Calculus

Find the intervals of increasing and decreasing for the following functions. Then locate and label the relative max/min.

1.
$$f(x) = x^3 - \frac{3}{2}x^2$$

2. $f(x) = x^2 + 8x + 10$
3. $f(x) = \frac{1}{2}x - \sin x$ [0, 2 π]

Find the point(s) of inflection in addition to the relative max/min for the following functions.

4.
$$f(x) = x^3 - 6x^2 + 12x - 8$$

5. $f(x) = \frac{1}{4}x^4 - 2x^2$

Given the function, find the following information.

6. $f(x) = x^3 - 3x^2$
Intervals of increasing
Intervals of decreasing
Intervals of concave up
Intervals of concave down
Relative Maxima
Relative Minima
Point(s) of Inflection

Chapter 5 Review Calculus

Find the absolute max/min of the following functions:

7.
$$f(x) = -x^2 + 3x$$
 [0,3]
8. $f(x) = x^3 + 6x^2$ [-6,1]
9. $f(x) = \cos x$ [0, 2 π]

10. Find the c guaranteed by the Mean-Value Theorem

$$f(x) = x^3 - x^2 - 2x \qquad [-1, 1]$$

11. Find the c guaranteed by Rolle's Theorem

$$f(x) = x^3 - 6x^2 + 11x - 6$$
 [1, 3]

12. You have 900 feet of fencing for your yard. You want to maximize the area of your yard. What will the dimensions be? What is the maximum area?